-8(x-21,5)(x-7,5)=-8^2+232x-1290

Simple and best practice solution for -8(x-21,5)(x-7,5)=-8^2+232x-1290 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8(x-21,5)(x-7,5)=-8^2+232x-1290 equation:



-8(x-21.5)(x-7.5)=-8^2+232x-1290
We move all terms to the left:
-8(x-21.5)(x-7.5)-(-8^2+232x-1290)=0
We get rid of parentheses
-8(x-21.5)(x-7.5)-232x+1290+8^2=0
We multiply parentheses ..
-8(+x^2-7.5x-21.5x+161.25)-232x+1290+8^2=0
We add all the numbers together, and all the variables
-8(+x^2-7.5x-21.5x+161.25)-232x+1354=0
We multiply parentheses
-8x^2+56x+168x-232x-1290+1354=0
We add all the numbers together, and all the variables
-8x^2-8x+64=0
a = -8; b = -8; c = +64;
Δ = b2-4ac
Δ = -82-4·(-8)·64
Δ = 2112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2112}=\sqrt{64*33}=\sqrt{64}*\sqrt{33}=8\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{33}}{2*-8}=\frac{8-8\sqrt{33}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{33}}{2*-8}=\frac{8+8\sqrt{33}}{-16} $

See similar equations:

| 33+7x+5=90 | | 17.3x=224.9 | | 6-1/3x=-2 | | 5-2x^2=3 | | 4x^2+x^2=140 | | -7+x-5x=-27 | | 175000=1.03x | | 8p−1=5p−1+3p | | 6x^2-22=33 | | 16=18−2q | | 32-7x=15 | | 106=-263-9x | | -3/4(16a-12)=57 | | 12^2+16^2=c^2 | | 78=6e | | t/4+(t)/3=7/12 | | 4(2y+7)=65 | | 30x+30=20x-180 | | -5704.64=-73.8x | | 18=4+3(f-9) | | 6a÷5=5 | | X+2(x-1)=4x+5 | | 3x/7-(2)/7=10/7 | | 22+15x=150 | | x+17=74.8 | | 345=-3x+6(2x+41) | | 6(-x+9)=47 | | 4s+9-3=25 | | X+139=132x | | e9e+4=−5e+14+13 | | (8-4p)=32 | | 2c+c+5=23 |

Equations solver categories